🔗LC2629 🟢 Easy 🧩 Pattern – Function Transformations
📅 Day 8/30 Days of JavaScript
Given an array of functions [f1, f2, f3, ..., fn]
, return a new function fn
that is the function composition of the array of functions.
The function composition of [f(x), g(x), h(x)]
is fn(x) = f(g(h(x)))
.
The function composition of an empty list of functions is the identity function f(x) = x
.
You may assume each function in the array accepts one integer as input and returns one integer as output.
Example
Input: functions = [x => x + 1, x => x * x, x => 2 * x], x = 4
Output: 65
Explanation:
Evaluating from right to left ...
Starting with x = 4.
2 * (4) = 8
(8) * (8) = 64
(64) + 1 = 65
Solution
Iterate the array in reverse order so that we can call functions from right to left.
/**
* @param {Function[]} functions
* @return {Function}
*/
var compose = function (functions) {
return function (x) {
let result = x;
// Call the functions in reverse order
for (let i = functions.length - 1; i >= 0; i--) {
result = functions[i](result)
}
return result;
}
};
/**
* const fn = compose([x => x + 1, x => 2 * x])
* fn(4) // 9
*/